

Why a Microgrid for This Site?

- Existing grid is not sufficient
- Three phase power is too far away to bring it to site.
- The goals of the project include being as environmentally friendly as possible.

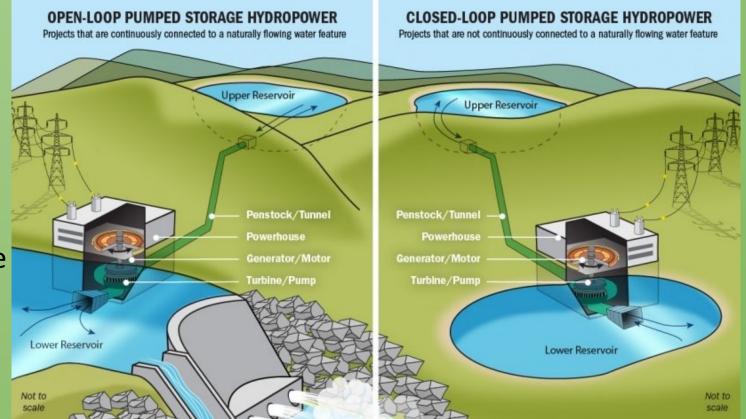
Design Philosophy for the Project

• Energy

- 100% Renewable Energy
- Fossil Fuel Free
- Reducing Energy Demand
- Water
 - Using Non-potable Water for Irrigation and Flushing
 - Closed Loop Water System with Well and Septic
- Wellness
 - Adaptive Thermal Comfort
 - Circadian Lighting in Guest Rooms
 - Well Standard for Air and Water Quality

Microgrid Design Requirements

- Reliable Power
 - Continuous Power Required for the Site
 - Loss of Utility cannot cause a power outage
- Resilient Power
 - The Microgrid Shall Adapt to Changes in the
 - Load
 - Distribution Network
 - Weather
- Renewable Power
 - The Microgrid Shall use be Net Zero Energy or Better

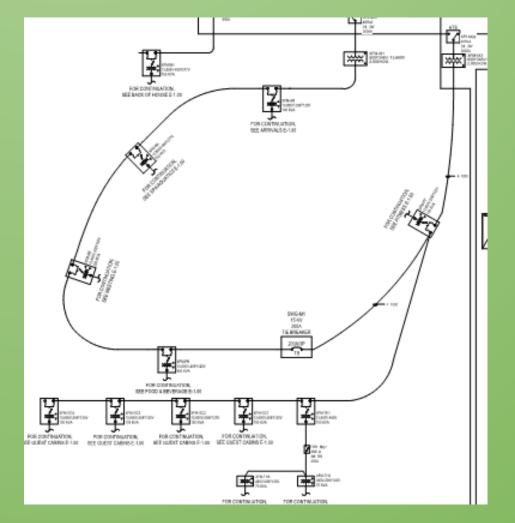


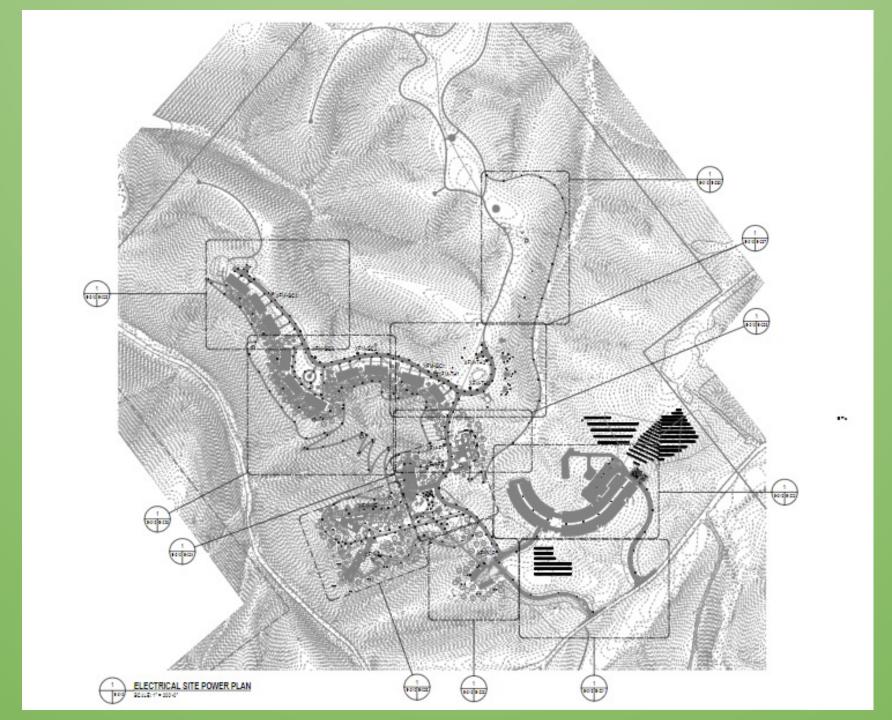
Microgrid Generators Explored

Microgrid Storage

- Battery System
 - Readily Available
 - Commonly Understood
- Pumped Hydro System
 - Long Time Energy Storage
 - Expensive
 - Requires Large Area
- Thermal Storage
 - Works well with the HVAC system

Microgrid Storage (cont.)


- Gravity Energy Storage
 - High Energy Density
 - Expensive if Hidden
 - Unsightly if not Hidden
- Flywheel Storage Systems
 - Fast Response
 - Short Duration

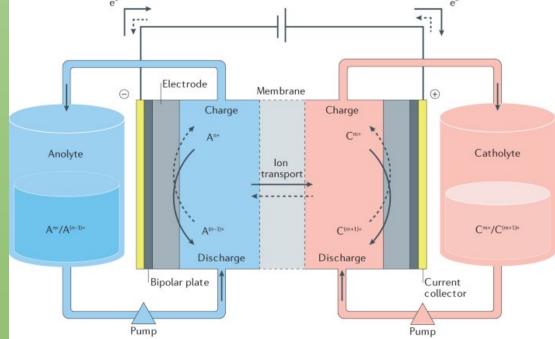


Microgrid Design Concept

- 2 MW Solar Array
 - Ground Mounted
 - 3.2 Acre total field
 - 0.65 GCR
- 7000 kWH Battery
 - 800kW Inverter
- 150 kVA Utility Connection
 - Single Phase
- 13.8 kV Distribution
 - Reduce Infrastructure Costs
 - Reduce Losses in the Wire
- Ring with Spoke Architecture

Battery Technology Explored

- Lead Acid Batteries
 - Benefits
 - Common
 - Inexpensive
 - Recyclable
 - Problems
 - Maintenance
 - Energy Density
 - Not in-line with the Design Philosophy of the Project.


Battery Technology Explored (Cont.)

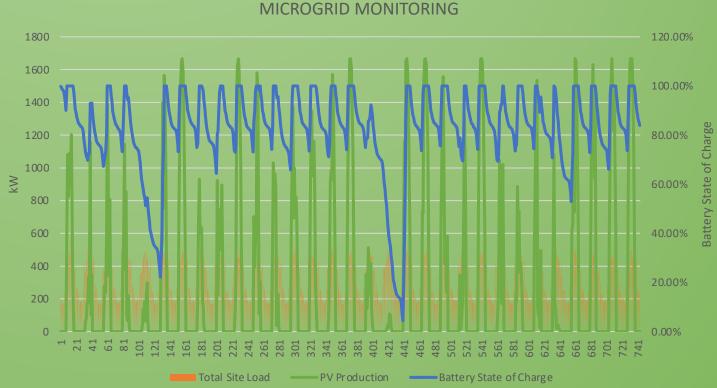
- Lithium Iron Phosphate
 - Benefits
 - High Energy Density
 - Increasingly Common
 - Decreasing Cost
 - Lower Maintenance
 - Problems
 - Availability
 - Total Carbon Impact
 - Frequent Deep Discharge can Lead to Early Replacement
 - Potential for Thermal Runaway
 - Environmental Impact of Mining Lithium

Battery Technology Explored (Cont.)

- Flow Batteries
 - Benefits
 - Safe
 - No thermal runaway
 - Environmentally friendly* components and fluids
 - Easy to Maintain
 - Potential to Reach Cost Parody with Li Batteries
 in Near Future
 - Excellent Deep Cycle Capabilities
 - Long Lifetimes
 - Rated for 25 year, potential for much longer)
 - Problems
 - Most Cost Effective
 - When energy arbitration is available
 - For larger systems
 - Large Footprint
 - Requires Deep Cycling to Maintain Chemistry

Battery Technology Explored (Cont.)

- Combination of Flow and Lithium Batteries
 - Benefits
 - Good Peaking and Depth of Discharge
 - Lithium handles high instantaneous current well
 - Flow Batteries handle deep discharge well
 - Reduces the replacement Costs for the Lithium Batteries
 - By minimizing the frequency of deep discharge
 - By reducing the size of the Lithium battery required
 - Problems
 - High Initial Cost
 - Complicated Control System Required


Thermal Storage

- Geothermal System
 - Used for the HVAC System and Water Heating
 - Stores energy in the ground for later use
 - Reduces the electricity required to heat and cool
 - Not Used for Electricity Production

Microgrid Features

- Instantaneous Monitoring
 - Battery Health Monitoring
 - State of Charge
 - Cell Health
 - Distribution Losses
 - Solar Production

Microgrid Features (Cont.)

- Predictive Analyses
 - Weather Prediction
 - Weather Monitoring
 - Intensity and duration of storms
 - Weather leading up to the storm
 - Weather after the storm
 - Solar Production Predictions
 - Pre-storm predictions
 - During the storm
 - Post-storm predictions
 - Load Prediction
 - Historical Metering Data

Microgrid Features (Cont.)

- Load Shedding
 - Automatic Load Shed/Add
 - Building by Building
- States of Operation
 - Normal Conditions
 - Loss of Utility Connection
 - Inclement Weather
 - Summer Production

Complications of the Design

- Covid and Supply Chain
 - Long Lead Items
 - Batteries
 - Electrical Components
 - High Demand
 - Batteries are in high demand as their benefits are realized by the industry
 - Workforce reductions during Covid

Complications of the Design (Cont.)

- Cutting Edge Technology
 - New Energy Storage Technology
 - Flow batteries are new tech
 - Maintenance track record
 - End of life
 - Scaling down
 - Startup Companies
 - The latest tech is often provided by a startup company
 - Will the startup be there to support the installation?

Complications of the Design (Cont.)

- Phase Changing
 - One phase to three phase and back
 - DC coupled phase conversion.
 - Limitations of single phase inverters
 - 10 15 kW typical size
 - Interconnecting with available large battery systems
 - Utility requires current limitation
 - Achieved by single phase inverters
- Cost of Infrastructure.

Conclusions

- Benefits of the microgrid
 - Project can still move forward without major utility infrastructure requirements.
 - The design philosophies of harmonizing with nature and having a clean energy power source are realized.
 - The project provides resilient, reliable renewable power for the wellness center.