340+ Dixwell, New Haven, CT

80% Affordable (60% AMI or less) and 20% Market

A Mass Timber & Passive House Integrated Design with Photovoltaics

69 Units Total

GRAY ORGANSCH

Schadler Selnau associates, p.c.

Architect of Record /Passive House Consultant:

Schadler Selnau Associates, PC 5 Waterville Road Farmington, CT 06032 Paul Selnau, AIA, CPHC © *Presenter*

Design Architect + Mass Timber Consultant:

Gray Organschi Architecture 35 Crown Street New Haven, CT 06510

Structural Engineer:

Odeh Engineers 1223 Mineral Spring Avenue, North Providence, RI 02904

US Forest Service through 2018 Wood Innovation Grant (WIG)

Owners:

David Cleghorn – H.E.L.P. Development Corp. Darrell Brooks – Beulah Land Development Corporation Jeff Spiritos – Spiritos Properties LLC **Presenter**

Mechanical & Electrical Engineer:

Acorn Consulting Engineers Inc. 244 Farms Village Road, West Simsbury, CT 06092

Civil Engineer:

John Paul Garcia & Associates, P.C. 190 Fairwood Road, Bethany, CT 06524

Low Income Housing Tax Credit Project through CHFA, DOH and City of New Haven, CT. Covid related shortfall impedes closing and construction start

Structural Strategy

Interior Renderings

Typical unit interior rendering

Main lobby interior rendering

Typical one bedroom unit

Typical two bedroom unit

Wall, Ceiling Strategies

Incremental benefits for mass timber vs light frame

- 1. Parts and pieces with light frame, there are many more elements to gather and put together
- 2. Height– Light frame can be a maximum of 5 floors over a concrete or steel podium
- 3. Site impact more deliveries, traffic, trade parking needed with light frame
- 4. Crew size 20-30 people compared to 6 or so with mass timber
- 5. Labor challenges greater and greater shortages of labor challenge progress and pricing
- 6. Elevator and stair core walls typically done in concrete or concrete block
- 7. Waste and clutter cutting lumber, sheathing, TJI's on site, blocking, and bracing all take space and create safety concerns with waste
- 8. Eliminate the steel or concrete podiums, which are the carbon emitting technologies not structurally required
- 9. Speed a) erecting walls, shear walls, bearing walls, ceiling joists, connections take longer than placing glulam/CLT panels
 b) need to wait till roof is on to start insulation and gypsum due to water infiltration concerns
- 10. Quality dimensional lumber is less dimensionally stable
- 11. Thermal performance wood studs are thermal breaks in an outer wall that diminish wall R value
- 12. Safety fall and trip hazards, and walking on installed joists are a skill
- 13. Fire risk during construction Dimensional lumber more susceptible
- 14. Insurance costs May be higher with light frame due to construction risks (safety and fire) during placement
- 15. Durability light frame structures are subject to more movement and weather impact
- 16. Natural environment Light frame buildings require covering all wood with artificial surfaces
- 17. Healthfulness exposed wood shown to reduce asthma and stress, lowers heart rate and blood pressure, improve concentration

NOTE - GENERAL CONTRACTOR ADD ONS - GC, INSURANCE, BOND, FEE ARE REFLECTED PROPORTIONATELY NOTE - COST DIFFERENCES IN THE 0% PERCENTAGE COLUMN ARE DUE TO ROUNDING

BUILDING GROSS SF	86,807		
CATEGORY	MASS TIMBER	(MT) (\$) LIGHT FRAME (LF) (\$)	MT PERCENTAGE OF LF (%)
GENERAL REQUIREMENTS	678,927	720,541	-5.78%
SITEWORK	885,870	894,752	0%
FOUNDATION	627,196	633,450	0%
MASONRY	124,375	401,891	-69.05%
METALS	380,692	599,767	-36.53%
WOOD STRUCTURE & PLASTICS	4,592,849	2,384,866	92.58%
THERMAL & MOSITURE	2,390,586	2,108,925	0%
DOORS & WINDOWS	983,251	993,056	0%
FINISHES	1,370,747	1,861,678	73.63%
SPECIALTIES	78,395	79,180	0%
EQUIPMENT	237,577	239,948	0%
FURNISHINGS	308,454	311,529	0%
CONVEYING SYSTEMS	502,332	507,341	0%
FIRE PROTECTION	467,385	472,045	0%
PLUMBING	1,037,884	1,048,232	0%
HVAC	1,546,477	1,561,897	0%
ELECTRICAL	1,631,961	1,648,233	0%
SUBTOTAL	17,844,958	16,467,331	108.37%
CONSTRUCTION PERIOD INTEREST (2 MO)	-80,000		-80,000
NET RENT COLLECTION (2 MO)	-20,000		-20,000
SUBTOTAL COST OFFSET	-100,000		-100,000
TOTAL COST WITH OFFSET	17,744,958		
COST/SF	205.57	189.70	15.87
OFFSETTING NET REVENUE	-1.15		-1.15
TOTAL COST/SF	204.42	189.70	14.72

340+ Dixwell

340+ Dixwell Project Overview

Project	340 Dixwell Avenue,
Location	New Haven, CT
Project Type	Residential Multi-family
Construction	Cross-laminated timber (CLT)
Total Units	57 (Bldg. 340) 12 (Bldg. 316)
Overall SF	65,766 sf (Bldg. 340) 14,047 sf (Bldg. 316)
Number of	4 (Bldg. 340)
Stories	4 (Bldg. 316) & Rooftop Terrace
Exterior Wall	Rockwool Comfortboard 80
Insulation	4" (Bldg. 340)
Material	6" (Bldg. 316)
Slab	2" Con't EPS (Bldg. 340)
Insulation	6" Con't EPS (Bldg. 316)

Mass Timber Systems

DLT dowel-laminated timber

NLT nail-laminated timber

GLT glue-laminated timber

CLT cross-laminated timber

Wufi Modeling:

340 Dixwell

Na	Name					
4" (4" Conc Slab -2" EPS					
The	Thermal resistance [hr ft² *F/Btu 9.62 /9.62 (EN ISO 6946 / homogenous layers)					
Nr.	Material / Layer (from outside to inside)	Color	λ [Btu/hr ft °F]	Thickness [in]	R [hr ft² °F/Btu]	
1	EPS (heat cond.: 0.04 W/mK - density: 1		0.0181	2	9.2	
2	Concrete		0.7933	4	0.42	

5 p	5 ply clt Roof -12" Polyiscoyanurate (Average)				
The	Thermal resistance [hr ft² *F/Btu] 77.792 / 77.792 (EN ISO 6946 / homogenous layers)				
Nr.	Material / Layer (from outside to inside)	Color	λ [Btu/hr ft °F]	Thickness [in]	R [hr ft² °F/Btu]
1	Polyisocyanurate Insulation		0.0139	12	72.114
2	5-ply cross-laminated panel		0.0693	4.724	5.678

3 p	3 ply CLT Wall - 4" Rockwool Confortboard 80					
The	Thermal resistance [hr ft² *F/Btu] 18.835 / I8.835 (EN ISO 6946 / homogenous layers)					
Nr.	Material / Layer λ Thickness R (from outside to inside) Color [Btu/hr ft *F] [in] [hr ft *F/Btu					
1	(de-Valued) Rockwool Confortboard 80		0.0236	4	14.1	
2	INTELLO (according to German approva		1.3867	0.039	0.002	
3	3-ply cross-laminated panel		0.0693	3.937	4.732	

5 p	5 ply CLT Wall - 4" Rockwool Confortboard 80					
The	Thermal resistance [hr ft² *F/Btu 18.835, 18.835 (EN ISO 6946 / homogenous layers)					
Material / Layer λ Thickness Nr. (from outside to inside) Color [Btu/hr ft *F] [in] [hr ft ²					R [hr ft² °F/Btu]	
1	(de-Valued) Rockwool Confortboard 80		0.0236	4	14.1	
2	INTELLO (according to German approva		1.3867	0.039	0.002	
3	5-ply cross-laminated panel		0.0693	3.937	4.732	

R-value 9.62

Slab

77.792 Roof

18.835 3 Ply Ext. Wall

18.835 5 Ply Ext. Wall

316 Dixwell

R-value

28.045

Slab

4" (Conc Slab -6" EPS					
The	hermal resistance [hr ft² "F/B u]: 28.045 / 28.045 (EN ISO 6946 / homogenous layers)					
Material / Layer λ Thickness Nr. (from outside to inside) Color [Btu/hr ft °F] [in] [hi					R [hr ft² °F/Btu]	
1	EPS (heat cond.: 0.04 W/mK - density: 1		0.0181	6	27.624	
2	Concrete		0.7933	4	0.42	

77.792	
Roof	

j p	וו clt Roof -12" Polyiscoyanurate (Average)						
he	mal resistance [hr ft² *F/Btu] 77.792 / 77.792 (EN ISO 6946 / homogenous layers)						
r.	Material / Layer λ Thickness R (from outside to inside) Color [Btu/hr ft *F] [in] [hr ft ² *F/Btu]						
	Polyisocyanurate Insulation		0.0139	12	72.114		
	5-ply cross-laminated panel		0.0693	4.724	5.678		

26.093	
3 Ply	
Ext. Wall	

3 p	3 ply CLT Wall - 6" Rockwool Confortboard 80						
Thermal resistance [hr ft² °F/Btu] 26.093 / 26.093 (EN ISO 6946 / homogenous layers)							
Nr.	Material / Layer (from outside to inside)	Color	λ [Btu/hr ft °F]	Thickness [in]	R [hr ft² °F/Btu]		
1	(de-Valued) Rockwool Confortboard 80		0.02341	6	21.358		
2	INTELLO (according to German approva		1.3867	3.9E-2	0.002		
3	3-ply cross-laminated panel		0.0693	3.937	4.732		

26.093 5 Ply Ext. Wall

5 p	5 ply CLT Wall - 6" Rockwool Confortboard 80 Thermal resistance for ff2 "F/Rb : 26 093 26 093 (EN ISO 6946 / homogenous lavers)						
Nr.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
1	(de-Valued) Rockwool Confortboard 80		0.02341	6	21.358		
2	INTELLO (according to German approva		1.3867	3.9E-2	0.002		
3	5-ply cross-laminated panel		0.0693	3.937	4.732		

① <u>TYP. DIXMELL STREET FDN DETAL @ 3 FLY</u> 1 1/2" = 1"-0"

Wood Framed PH vs CLT Framed PH: Exterior Wall & Floor Detail

cross laminated timber constructionpassive house

340 Dixwell: Roof Detail

Typical Window Details

AFTLY BEALANT CONTINUOUSLY ARCINO PERMETER OF UNIT ICOMPARTMENTALIZATION AR BARRIERU TO DRIVALL CONNECTION CONNECTING VERTICAL TO ICORZONTAL, AFFLY BEALANT TO BLOCKING DRIVALL CONNECTION.

Exterior Detailing for thermal bridges: North Facade

North Cowl Thermal

Bridge Calculation:

30 FT Vertical

8 FT Horizontal

Total = 76 FT

912(.072) = 65.664

(2 Sides)

(2 Sides)

Nr	Name	Linear thermal transmittance [Btu/hr ft °F]	Length [ft]	Attachment
1	Apt above parking: #1 on A011	0.198	126.324	Ambient
2	North Facade Part Plan 1: #1/ A-307A	0.072	76	Ambient
3	North Facade Section @ Soffit: #10 /A307A	0.008	333.25	Ambient
4	Entry Door Sill Detail: A002 #1	0.261	27	Ambient
5	Grid C at Mech Rm: #1 / A006	0.16	47.74	Ambient

		U	dT	L	ULdT	error
2D model		(btu/hr.sf.F)	(F)	(in)	(btu/hr.ft)	(%)
	Interior	0.0593	54	84.13	22.45	4.78%
	Exterior	0.0415	54	120.05	22.42	4.78%
Component		U	ďT	L	ULdT	error
		(btu/hr.sf.F)	(F)	(in)	(btu/hr.ft)	(%)
Component A	Interior	0.0490	54	84.13	18.55	0.00%
WALL-4INCH, 100 mm	Exterior	0.049	54.00	84.13	18.55	0.00%
Component B	Interior				0.00	0.00%
N/A	Exterior	0.0000	0.00	0.00	0.00	0.00%
Psi		PsidT	dT	Psi	Psi for	WUFI
		(btu/hr.ft)	(7)	(btu/hr.ft.F)	(btu/h	r.ft.F)
	Interior	3.90	54.00	0.072	0.0	72
	Exterior	3.87	54.00	0.072	0.0	12

Exterior Detailing for thermal bridges: Typical door at grade

7 total exterior doors (Bldg. 340)

Total Length= 27 feet

324(.261) = 84.564

		U	dT	L	ULdT	error
2D model		(btu/hr.sf.F)	(F)	(in)	(btu/hr.ft)	(%)
	Interior	0.1038	54	75.19	35.12	4.97%
	Exterior	0.0164	54	476.83	35.19	4.97%
Component		U	dT	L	ULdT	error
		(btu/hr.sf.F)	(F)	(in)	(btu/hr.ft)	(%)
Component A	Interior	0.1419	54	11.98	7.65	0.00%
Glass Door	Exterior	0.142	54.00	11.98	7.65	0.00%
Component B	Interior	0.0609	27	72	9.87	0.00%
Slab	Exterior	0.0609	27.00	72.00	9.87	0.00%
Component C	Exterior	0.0491	54	16.00	3.54	0.00%
WALL-4INCH	Exterior	0.049	54.00	16.00	3.54	0.00%
Psi		PsidT	dT	Psi	Psi for	WUFI
		(btu/hr.ft)	(F)	(btu/hr.ft.F)	(btu/h	r.ft.F)
	Interior	14.07	54.00	0.261	0.2	61
	- · ·	r	F4 00	0.262	0.2	LOT

Exterior Detailing for thermal bridges: Balcony detail

Balcony Thermal Bridge Calculation:

31 total balconies Length 10 ft 9 in 129 inches x 31 balconies = 3999 3999 (0.008) = 31.992

(RATED ASSEMBLY ACHIEVES 55 STC & 51 IIC) (SOPREMA INSONOFLOOR OR SIMILAR)

GLULAM LEDGER MECHANICALLY FASTENDED THROUGH

•PT SLEEPERS GLULAM DECK STRUCTURE •GLULAM OR STEEL ANGLE LEDGER

		U	dT	L	ULdT	error
2D model		(btu/hr.sf.F)	(F)	(in)	(btu/hr.ft)	(%)
	Interior	0.0224	54	135.67	13.68	3.42%
	Exterior	0.022	54	138.25	13.69	3.42%
Component		U	dT	L	ULdT	error
		(btu/hr.sf.F)	(F)	(in)	(btu/hr.ft)	(%)
Component A	Interior	0.0483	54	60.99	13.26	0.00%
WALL-4INCH, 100 mm	Exterior	0.048	54.00	60.99	13.26	0.00%
Component B	Interior				0.00	0.00%
N/A	Exterior	0.0000	0.00	0.00	0.00	0.00%
Psi		PsidT	dT	Psi	Psi for	WUFI
		(btu/hr.ft)	(F)	(btu/hr.ft.F)	(btu/h	r.ft.F)
	Interior	0.42	54.00	0.008	0.0	00

Flooring Assembly Analysis At Soffit

Case 10: No Intello

Pass

Pass

Pass

Ventilation/Mechanical Systems

<u>Swegon ERV</u> ERV-1 1885 CFM ERV-2 2380 CFM

Tankless Water Heater

Super High Efficiency (Condensing) Rinnai -CU199i Up to 97% thermal efficiency Certifications: AHRI, ANSI Z21.10.3, CSA 4.3, and Energy Star®

Variable Refrigerant Flow

VRF-1A 25.7/11.55 (IEER/EER) VRF-1B 22.3/11.15 (IEER/EER) VRF-2A 26.9/12.3 (IEER/EER) VRF-2B 22.3/11.15 (IEER/EER)

<u>Fujitsu</u>

Airstage VR-II EER (95F): 10.90 IEER: 19.60 SCHE: 25.20

<u>Quest 70 Dehumidifier</u> 150 CFM 120 Volts

Typical Apartment Building: Ventilation/Mechanical Systems

Renewable Energy

Source energy

35,000 kWh/yr Onsite Utilization from PV energy covering 36.46% of building electric usage

Source energy

145,000 kWh/yr Onsite Utilization from PV energy covering 26.16% of building electric usage

180,000 kWh/yr Onsite Utilization from PV energy covering 27.68% of Total electric usage

Carbon Emissions for 340+ Dixwell Project

Volume of wood products used: 2,468 cubic meters (87,156 cubic feet)

Avoided greenhouse gas emissions: 738 metric tons of carbon dioxide

Carbon stored in wood: 1906 metric tons of carbon dioxide

Total potential carbon benefit: 2644 metric tons of carbon dioxide

U.S. and Canadian forests grow this much wood in:7 minutes

Equivalent to:

559 cars off the road for a year

Energy to operate 279 homes for a year

In conclusion...

Key Points:

1. Increasing **popularity in QT incorporating** net-zero design strategies and embodied carbon. Used in a range of **affordable multifamily** housing projects because of its structural diversity.

2. Both traditional and CLT wood-frame structures meet the performance and net-zero goals for the affordable multifamily type, but in different ways.

3. Each construction type has its own unique challenge when designing to highly energy efficient structures.

4. Innovations in wood framing design techniques and products enhancing the energy efficiency in affordable multifamily projects

Thank you!

Paul H. Selnau, AIA, CPHC © Schadler Selnau Associates, P.C. Jeff Spiritos SPIRITOS PROPERTIES LLC