River Trails Early Learning Center Remodeling Mt Prospect, Illinois

Pre-Certified: PHIUS + 2018 PHIUS + SOURCE ZERO ICECF Net Zero Building Grant

Tom Boeman boeman design Boeman Design LLC

2607 West Leland Avenue | Chicago, IL 60625

Project Team

Owner

FGM ARCHITECTS

Project Architect

IMEG

MEP/FP Engineer

Photovoltaic Design

boeman design

Certified Passive House Consultant

PHIUS Certifier

What's Interesting about this Project

- It's a *Retrofit*
- It's Net Zero
- It's an *Educational Building*
- Its performance is being *Monitored* as a condition of Grant Funding.
- My First CPHC Project.

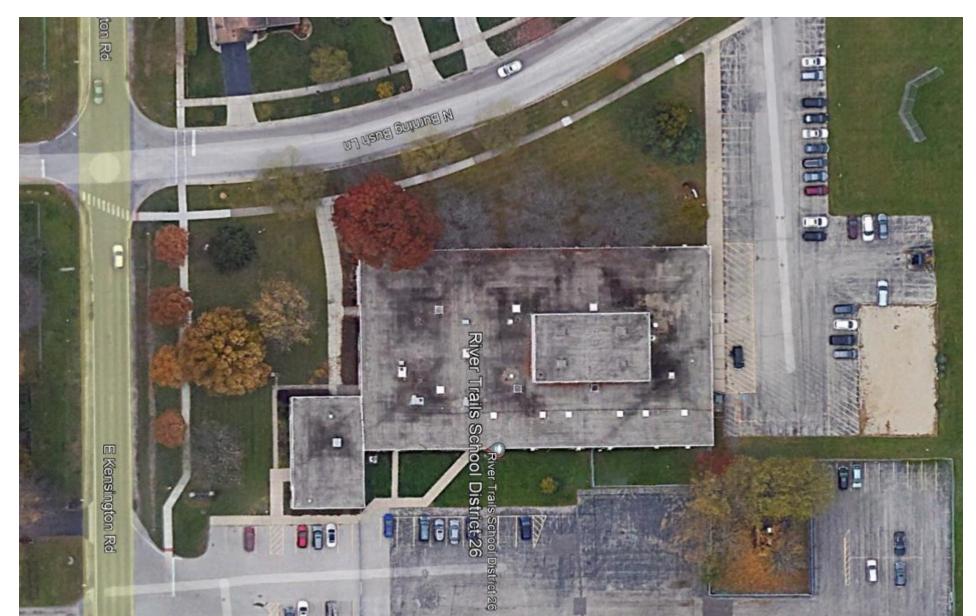
- First Remodeling of 1960s Modern 27,930 SF single story masonry Elementary School.
- Building includes School Offices, Classrooms, District Offices and Multipurpose room.
- Pursuing Net Zero Building Grant through the Illinois Clean Energy Community Foundation (ICECF)
- New Exterior Envelope including Walls, Roof, Doors and Windows.
- New HVAC System.
- New Interior and Exterior lighting systems.
- New roof-mounted PV array to offset source energy.

ICECF Net Zero Building Grant

Net Zero Energy Building Program

The Foundation's **Net Zero Energy Building Program** will award grants to new construction or retrofit projects that achieve site net zero energy performance or better, over the course of a year. Buildings must, at a minimum, offset all of their energy consumption with on-site generation from renewable resources. Grants will be paid incrementally, with full payment contingent on actual building performance.

The program goal is to encourage exemplary buildings that bring together beautiful design and careful construction to maximize energy efficiency, showcase renewable energy and, by educating the public and professionals, help pave the way for a larger shift in the building sector. The Foundation aims to fund projects that demonstrate that net zero energy buildings are realistic and achievable. These flagship projects will add to the knowledge base on net zero building design and operation.

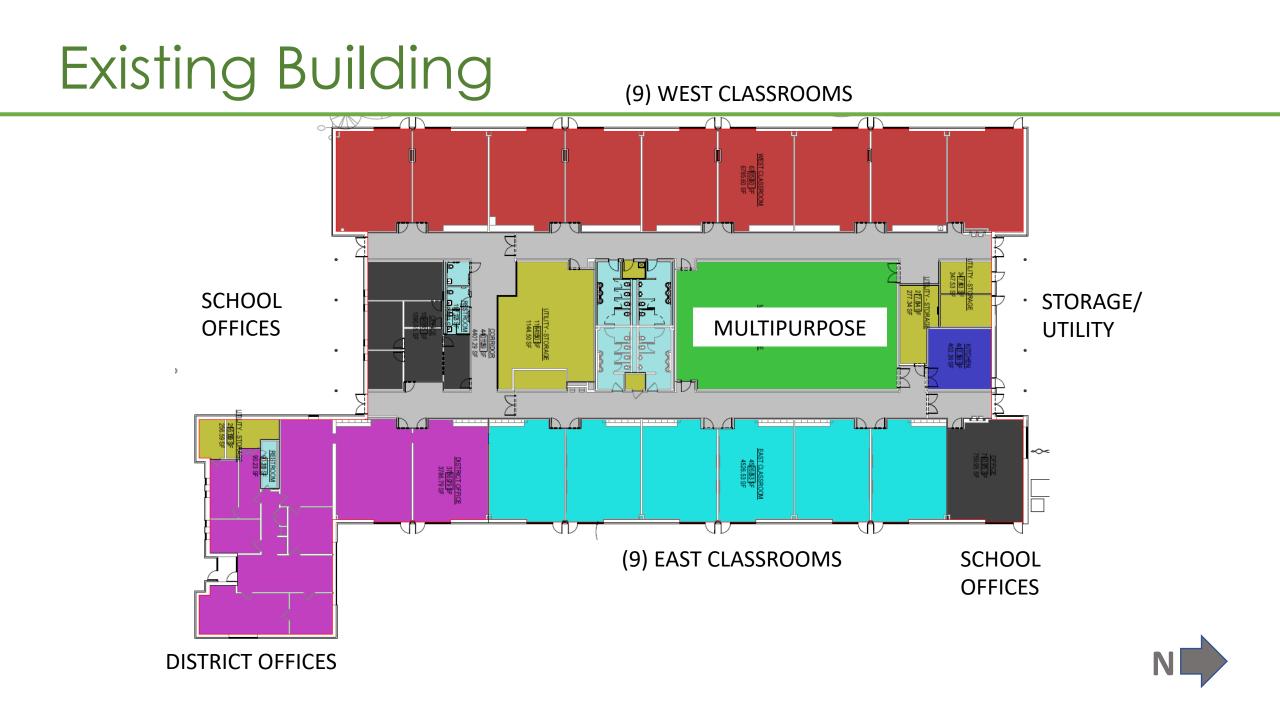

Exterior construction of Bott Park Indoor Recreation Center in Plainfield, IL. Photo: Wight & Company.

Grant requires dramatic reductions in energy consumption *prior* to offsetting with renewables. Reductions substantiated by: <u>PHIUS + 2018</u> or Petal (Energy) Living Building Certification

Grant requires all Renewable Energy to be generated on site.

Grant requires Monitoring of energy use and renewable production for 12 consecutive months to verify modeling

ICECF expects an EUI in the "high teens" to "low twenties"



N

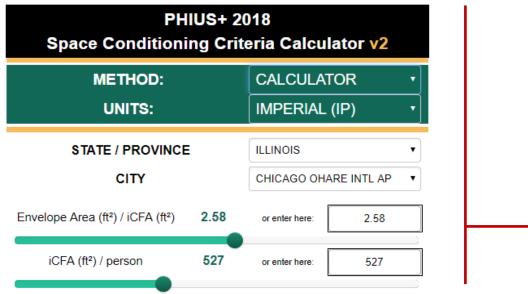
Physical Opportunities

- All new exterior envelope including wall finishes, glazing system and roofing.
- All new mechanical systems.
- All new Lighting Systems
- No Historic features or finishes were being preserved.

- "Pancake" building with relatively high surface area to iCFA. Less than optimal form.
- No opportunities to adjust window orientation or massing.
- Existing un-insulated slab on grade.

Process Opportunities

- The Owner had a strong commitment to achieving Net Zero
- The Architect, FGM, had a strong technical grasp of the issues. Adopted a straightforward "Textbook" approach
- The MEP Engineer, IMEG, had Net Zero building Experience
- The Builder Nicolas and Associates had 2 team members take the PHIUS Builder training in preparation for the project.


Process Challenges

- The CPHC was brought in at 100% Design Development
- The building was already designed as "Net Zero"....

..... But with IECC levels of insulation

PHIUS + Criteria Calculator: Inputs

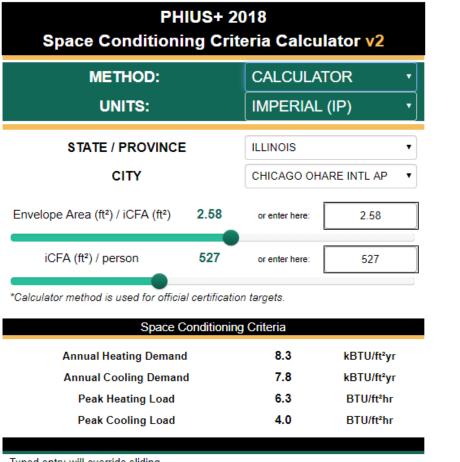
PHIUS+ 2018 Final Calculator v2

*Calculator method is used for official certification targets.

Space Conditioning Criteria									
Annual Heating Demand	8.3	kBTU/ft²yr							
Annual Cooling Demand	7.8	kBTU/ft²yr							
Peak Heating Load	6.3	BTU/ft²hr							
Peak Cooling Load	4.0	BTU/ft ² hr							

Typed entry will override sliding

scale


The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Inputs Local Climate Data Chicago Illinois Envelope to floor area: 2.58 iCFA 27,930 Sf Max Occupancy 297 (used for peak load) Average Occupancy 53 (used for annual demand)

PHIUS + Criteria Calculator: Targets

PHIUS+ 2018 Final Calculator v2

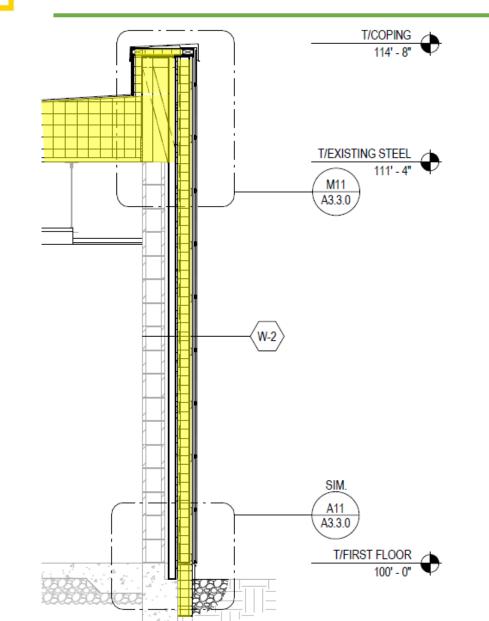
Typed entry will override sliding

scale.

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

– Targets:

Project Specific Targets for:


- Annual Heating Demand: 8.3 kBTU/ft²yr
- Annual Cooling Demand: 7.8 kBTU/ft²yr
- Peak Heating Load: 6.3 BTU/ft²hr
- Peak Cooling Load: 4.0 BTU/ft²hr

Universal Targets for:

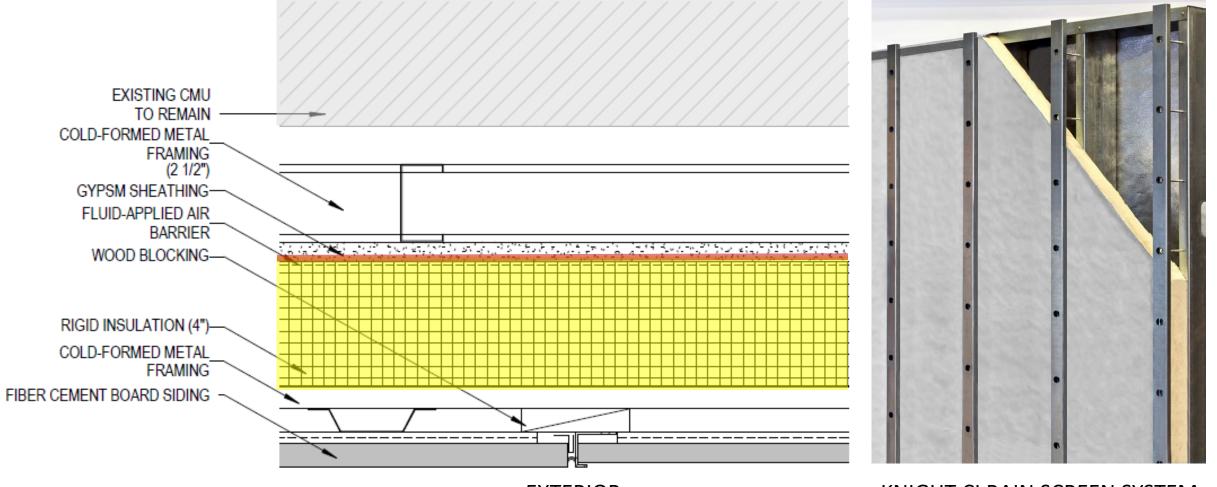
- Source Energy: 34.8 kBTU/ ft2 yr (110 kWh/ m2 yr)
- Air Tightness: q50 <= 0.060 CFM50/ft2 (Envelope)

Thermal Envelope - Wall Section

R-80 Roof (Effective)

Tapered" Polyisocyanurate (10" Min – 20" Max)

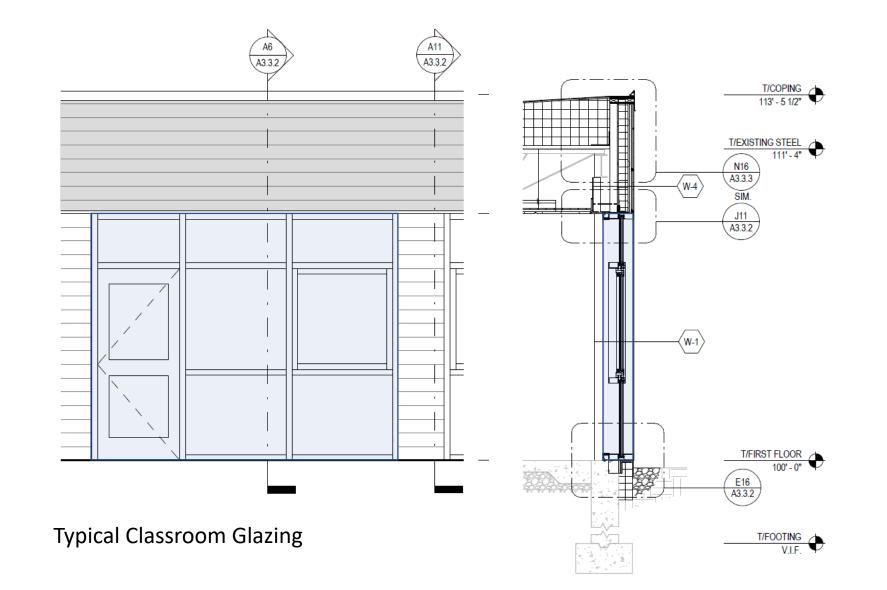
R-24 Walls (Total R-27)


4"Polyisocyanurate (Maximum accepted by Cladding Manufacturer)

R-30 Slab Edge/Foundation Wall

6"Polyisocyanurate 2'-0" deep

Thermal Envelope – Wall Detail


INTERIOR

EXTERIOR

KNIGHT CI RAIN SCREEN SYSTEM

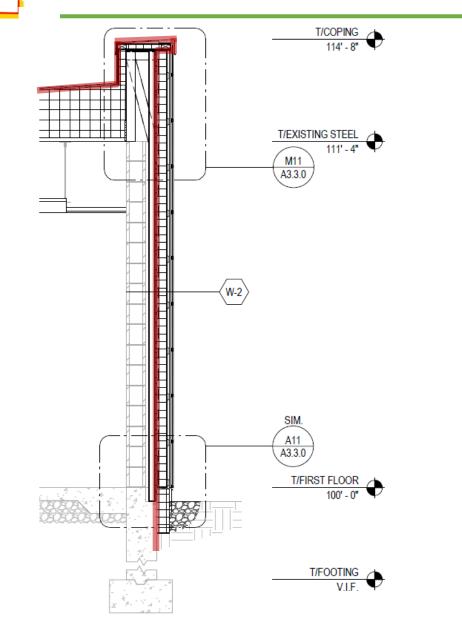
Thermal Envelope - Windows

Glass: U_{cog} 0.111 Triple Glazed Double Coated

Frame: U_{frame} ~0.88

Eliminate Spandrel Glass above Ceiling

Reduce to One Operable Window


Thermal Envelope - Windows

Kawneer 1600UT Triple glazed and Fiberglass Pressure Plates

Product name: 1600UT System [™] Curtain Wall- Fiberglass PP						Center-of-glass properties			
ASHRAE/IECC/						Vitro SB60	/ Argon / Clea	ir / Argon /	
DOE North	Nor	th,		PHILI	S	SB60 (6mm/			
American South									
Climate Zone facing	j -fac	ing	'	Passive House Instit	ute US				
					d U-value				
Climate specific recommendation			W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/hr.ft2.	
8			1.10	0.19	-	0.329	0.684	0.12	
7			1.07	0.19		0.329	0.656	0.13	
6			1.05	0.18		0.329	0.635	0.12	
5			1.05	0.18		0.329	0.632	0.12	
4			1.04	0.18		0.329	0.628	0.13	
Marine North			1.04	0.18		0.329	0.627	0.13	
Marine South			1.04	0.18		0.329	0.627	0.1	
3				0.18		0.329	0.627	0.13	
2 West			1.05	0.18		0.329	0.632	0.13	
2 East				0.18		0.329	0.632	0.1	
1600UT System™ Curtain V	/all-		FRA	ME		Psi-s			
Kommerling TPS Spacer		Frame	height U-frame			Ψ			
Horizontal two lite left	m	m	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F		
left h	ead	35	1.38	4.81	0.85	-0.001	-0.001		
le	t sill	35	1.38	4.82	0.85	-0.001	-0.001		
left j	amb	35	1.38	5.17		-0.001	-0.001		
right	MR	35	1.38	5.17	0.91	-0.001	-0.001		
1600UT System™ Curtain Wall- Fi		FRAME			Psi-s	Psi-opaqu			
		height	U-frame		y y				
Horizontal two lite right	m		in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	W/mK	
	ead	35		4.81	0.85	-0.001	-0.001	0.180	
right h				4.82	0.85	-0.001	-0.001	BTU/hr.ft.F	
righ	t sill	35			0.04	0.001	0.001	0.40.1	
•	amb	35 35 35	1.38	5.17		-0.001 -0.001	-0.001	0.104 Grade C	

PHIUS Verified Window Data.

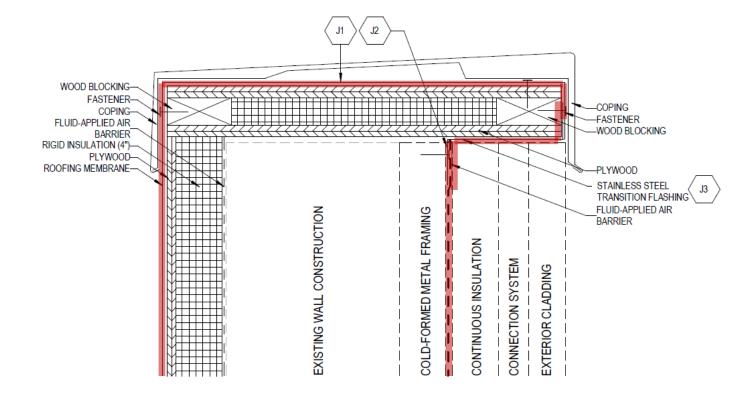
Continuous Air Barrier

Air Barrier Components:

Roof Membrane

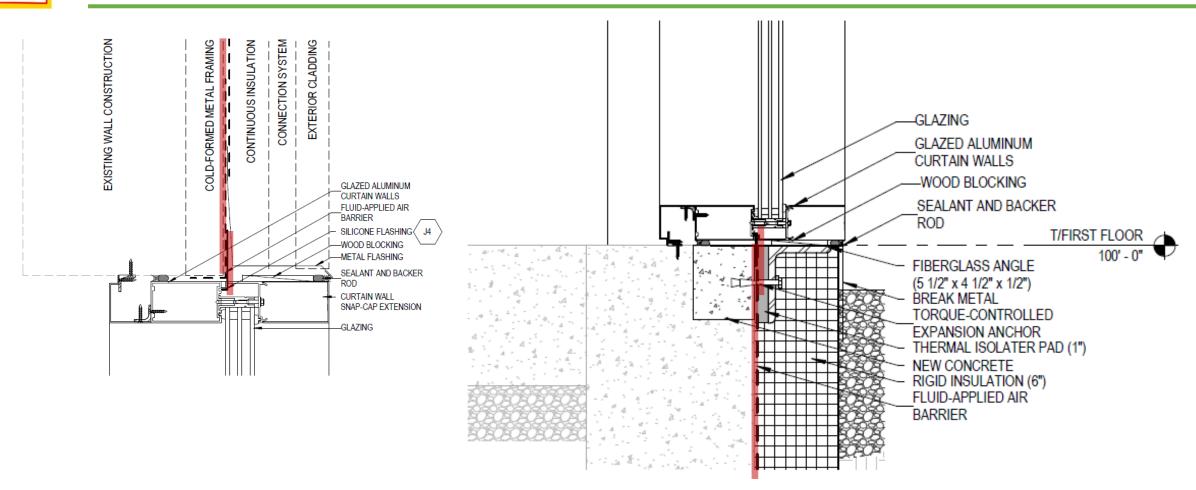
Fluid Applied Air Barrier

Wall Sheathing and Foundation Face Below.


Stainless Steel Transition Flashing.

Between Fluid Applied Air Barrier and Roof Membrane.

Silicone Window Flashing


Clamped into Glazing Channel

Continuous Air Barrier

TYPICAL PARAPET

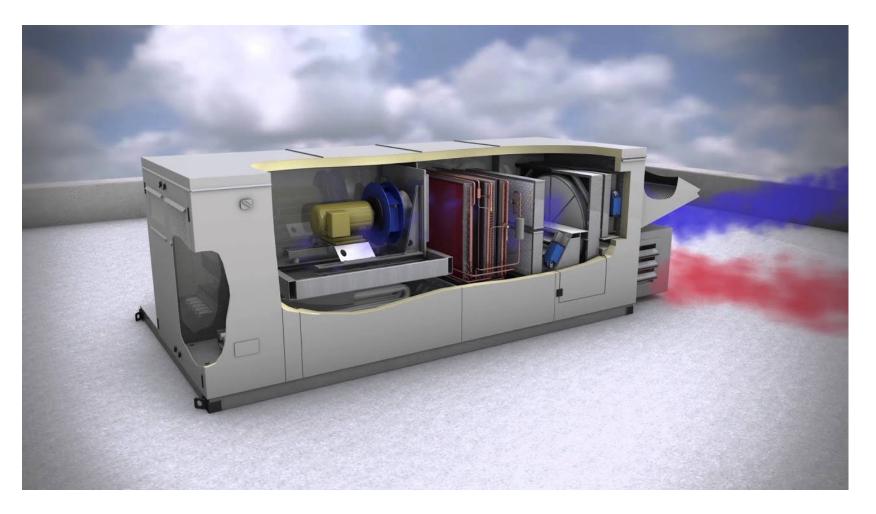
TYPICAL WINDOW SILL

TYPICAL WINDOW JAMB

25

DOAS COUPLED WITH VRF SYSTEM

DOAS Components:


ECM Motor Fan Electronically Commutated Motor

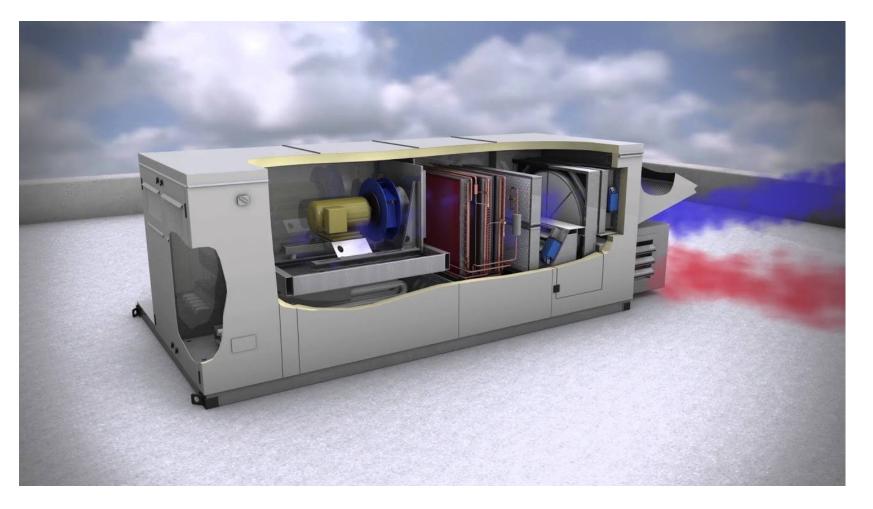
Energy Recovery Wheel All building exhaust is recovered

Digital Scroll Compressors

Match Compressor output to load

Heat Pump Heating Coefficient of Performance of 2.3 Operates in heating down to 0°F

DOAS Operating Modes:


Economizer Mode

Manages Moisture content of air Optimizes Dew point of outside air for Supply air

Free Cooling Mode

Provides additional cooling through ventilation when Outside air conditions are cooler than inside.

Dehumidification

IRI Certified Reference Nun	nber : 518128	Date : 11-20-2019	Model Status : Active	
d AHRI Reference Number	:			
and Name : Airxchange				
oduct Type : Wheel				
del Number : ERC-3014C				
lection Software Name :				
lection Software Version :				
ted as follows in accordance	e with the latest edition of Al	NSI/AHRI 1060 (I-P) Perfor	mance Rating of Air-to-Air Exchar	orders for Energy Recovery
ntilation Equipment and sub	ect to rating accuracy by AF	RI-sponsored, independer	t, third party testing:	
minal Air Flow (scfm) : 140	D			
essure Drop (at nominal airf	low, in. H2O) : 1.00			
Leakage Ratings	PressureDiff	EATR(%)	OACF	PurgeAngle
Test 1 :	0	2.4	1.04	N/A
Test 2 :	0.5	0.8	1.08	2
Test 3 :	1	0.9	1.10	1
	Sensible(%)	Latent(%)	Total(%)	
100% Air Flow Heating :	76	70	74	
75 % Air Flow Heating :	80	75	74	
100% Air Flow Cooling :	76	70	72	
75% Air Flow Cooling :	80	75	77	
	Net Sensible(%)	Net Latent(%)	Net Total(%)	
100% Air Flow Heating :	76	w 79 w.a	nridir <u>*</u> ctorv.o	
75 % Air Flow Heating :	80 74	75 69	78	
100% Air Flow Cooling :	80	09 74	72 77	
rewrant for ocomig.				
tive" Model Status are those that	at an AHRI Certification Program	Participant is currently produci	ng AND selling or offering for sale; OR	new models that are being
leted but are not yet being prod	uced. Production Stopped Mode	e Status are those that an AHH	I Certification Program Participant is n shown along with the previous (i.e. WA	o longer producing BUT is still

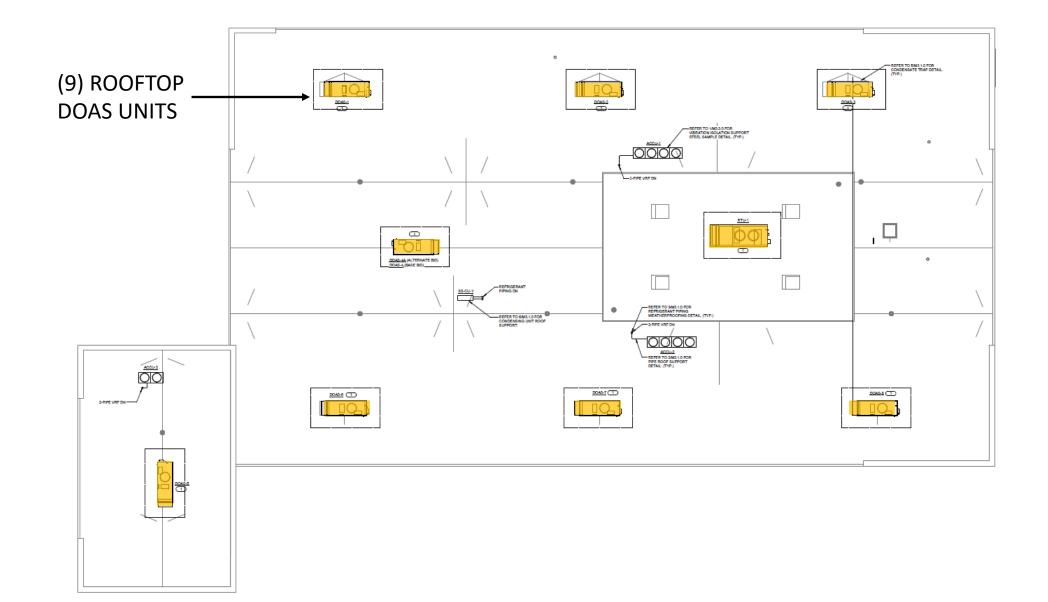
AIR-CONDITIONING, HEATING, & REFRIGERATION INSTITUTE

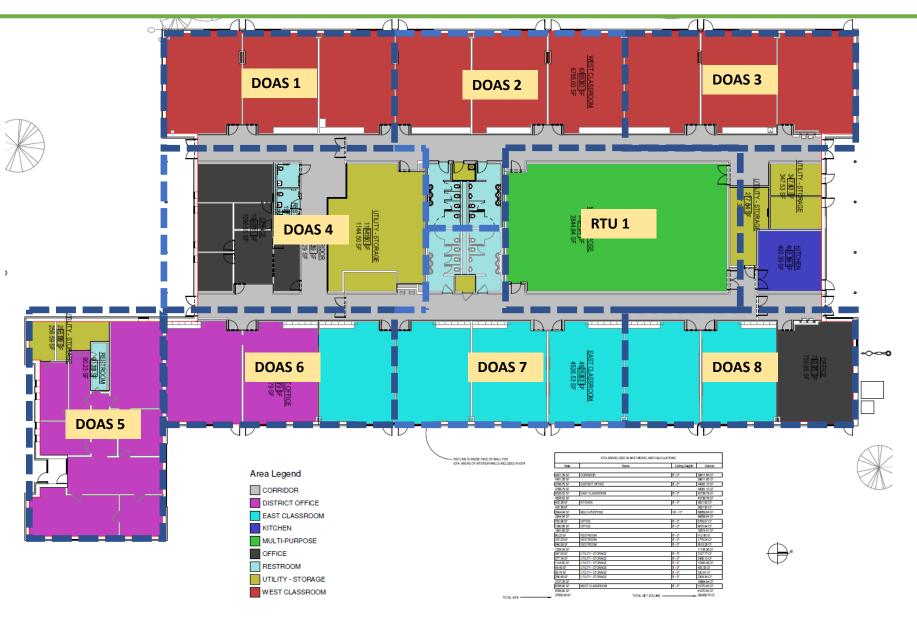
we make life better*

CERTIFICATE NO.

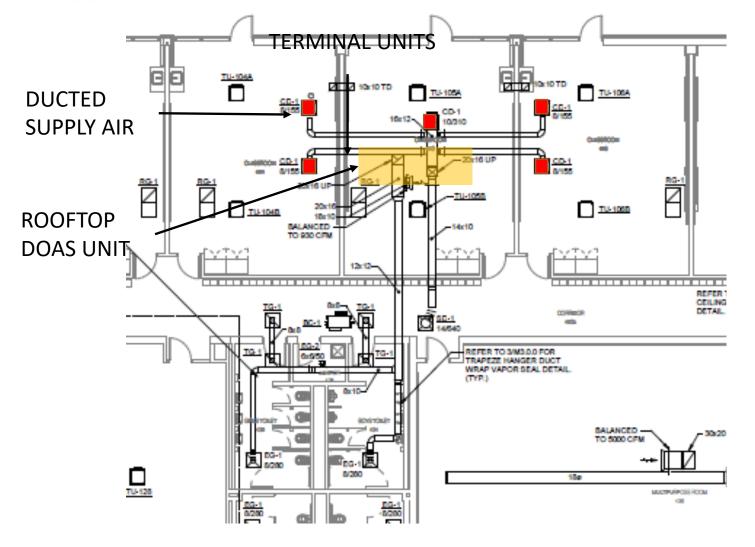
132187591191029440

The information for the model cited on this certificate can be verified at www.ahridirectory.org and enter the AHRI Certified Reference Number and the date on which the certificate was issue


which is listed above, and the Certificate No., which is listed at bottom right.


©2019Air-Conditioning, Heating, and Refrigeration Institute

personal and confidential reference.


CERTIFICATE VERIFICATION

WUFI Inputs												
Sensible Recovery Efficiency		Total Design A		Airflow								
0.81				10,435								
Humidity Recovery Efficiency 0.75												
0.75												
							Weighted	Weighted	Net Se	ensible		
Model	Units	CFM	Net Sen	sible (%)			Sensible	Humidity	Slope		Net Late	int Siop
				Cooling		Cooling	Recovery	Recovery		Cooling	Heating	
DOAS-1	100% AHRI Rated Airflow	1,400	76	74	70	69			0.0114	0.0171	0.0143	0.014
	75% AHRI Rated Airflow Design airflow	1,050	80 80.8	80 81.2	75 76.0	74 75.0	0.0759	0.0714				
	Design air now	900	00.0	01.2	70.0	75.0	0.0759	0.0714				
	100% AHRI Rated Airflow	1.400	76	74	70	69			0.0114	0.0171	0.0143	0.014
DOAS-2	75% AHRI Rated Airflow	1,050	80	80	75	74						
	Design airflow	1,570		71.1	67.6	66.6	0.1114	0.1017				
	100% AHRI Rated Airflow	1,400	76	74	70	69			0.0114	0.0171	0.0143	0.014
DOAS-3	75% AHRI Rated Airflow	1,050	80	80	75	74						
	Design airflow	930	81.4	82.1	76.7	75.7	0.0725	0.0684				
	100% AHRI Rated Airflow	1,400	76	74	70	69			0.0114	0.0171	0.0143	0.014
DOAS-4	75% AHRI Rated Airflow	1,400	80	80	70	74			0.0114	0.0171	0.0145	0.014
20/10-1	Design airflow	990		81.0	75.9	74.9	0.0765	0.0720				
	100% AHRI Rated Airflow	1,400	76	74	70	69			0.0114	0.0171	0.0143	0.014
DOAS-5	75% AHRI Rated Airflow	1,050	80	80	75	74						
	Design airflow	910	81.6	82.4	77.0	76.0	0.0712	0.0671				
	4000/ AUDID-t-d Ai-fi	4 400	76	74	70	69			0.0444	0.0474	0.0440	0.044
DOAS-6	100% AHRI Rated Airflow 75% AHRI Rated Airflow	1,400	80	80	70	74			0.0114	0.0171	0.0143	0.014
DOA3-0	Design airflow	700		86.0	80.0	79.0	0.0563	0.0537				
	boolgir air no tr		01.0	00.0	00.0	10.0	0.0000	0.0007				
	100% AHRI Rated Airflow	1,400	76	74	70	69			0.0114	0.0171	0.0143	0.014
DOAS-7	75% AHRI Rated Airflow	1,050	80	80	75	74						
	Design airflow	1,565	74.1	71.2	67.6	66.6	0.1112	0.1014				
			70	-	70							
DOAS-8	100% AHRI Rated Airflow 75% AHRI Rated Airflow	1,400	76 80	74 80	70 75	69 74			0.0114	0.0171	0.0143	0.014
	Design airflow	1,050	81.1	81.7	76.4	75.4	0.0739	0.0696				
	Design annow	000	01.1	01.7	10.4	10.4	0.0100	0.0000				
	100% AHRI Rated Airflow	3,200	65	64	61	60			0.0200	0.0143	0.0143	0.014
RTU-1	75% AHRI Rated Airflow	2,400	72	69	66	65						
	Design airflow	1,840	92.2	83.4	80.4	79.4	0.1626	0.1418				
	100% AHRI Rated Airflow	-							0.0000	0.0000	0.0000	0.000
	75% AHRI Rated Airflow Design airflow	0	0.0	0.0	0.0	0.0	0.0000	0.0000				
	Design all now		0.0	0.0	0.0	0.0	0.0000	0.0000		l		
	100% AHRI Rated Airflow								0.0000	0.0000	0.0000	0.000
	75% AHRI Rated Airflow	0										
	Design airflow		0.0	0.0	0.0	0.0	0.0000	0.0000				
	100% AHRI Rated Airflow								0.0000	0.0000	0.0000	0.000
	75% AHRI Rated Airflow	0					0.0000	0.0000				
	Design airflow		0.0	0.0	0.0	0.0	0.0000	0.0000				
	100% AHRI Rated Airflow								0.0000	0.0000	0.0000	0.000
	75% AHRI Rated Airflow	0							0.0000	3.0000	0.0000	0.000
	Design airflow		0.0	0.0	0.0	0.0	0.0000	0.0000	1			
	-									-		_

Ventilation Air Distribution:

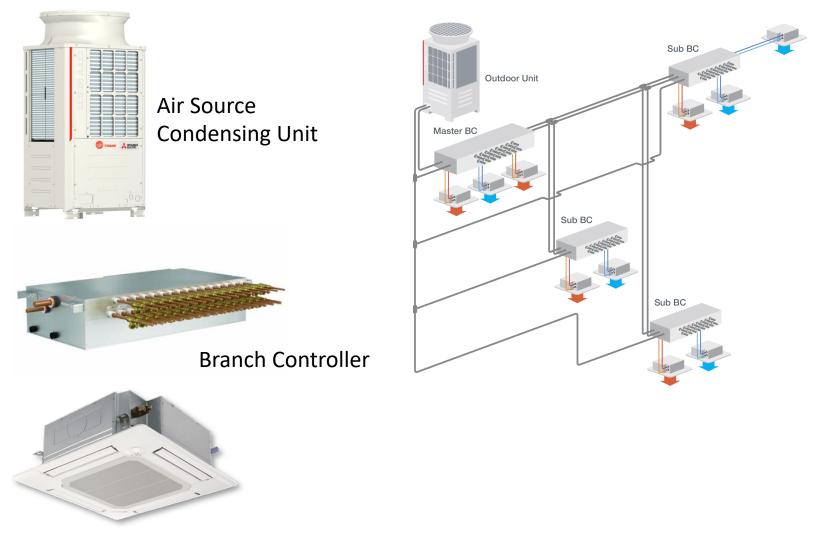
Ducted Supply to Classrooms, Corridors and other occupied spaces.

Plenum Return from Occupied Spaces

Ducted Return from Restrooms

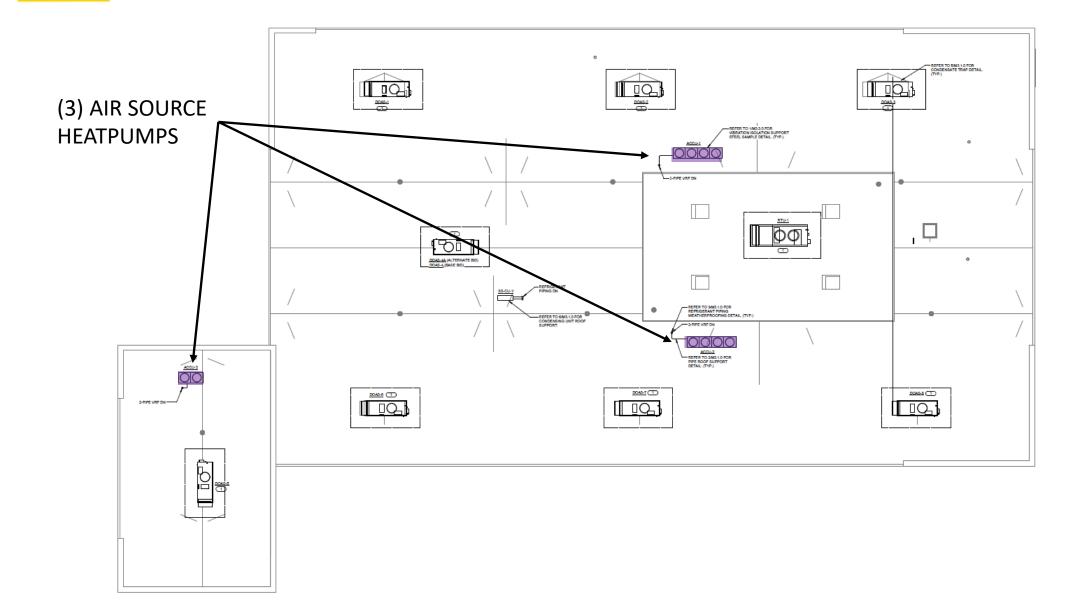
Variable Refrigerant Flow System (VRF)

VRF System Components:

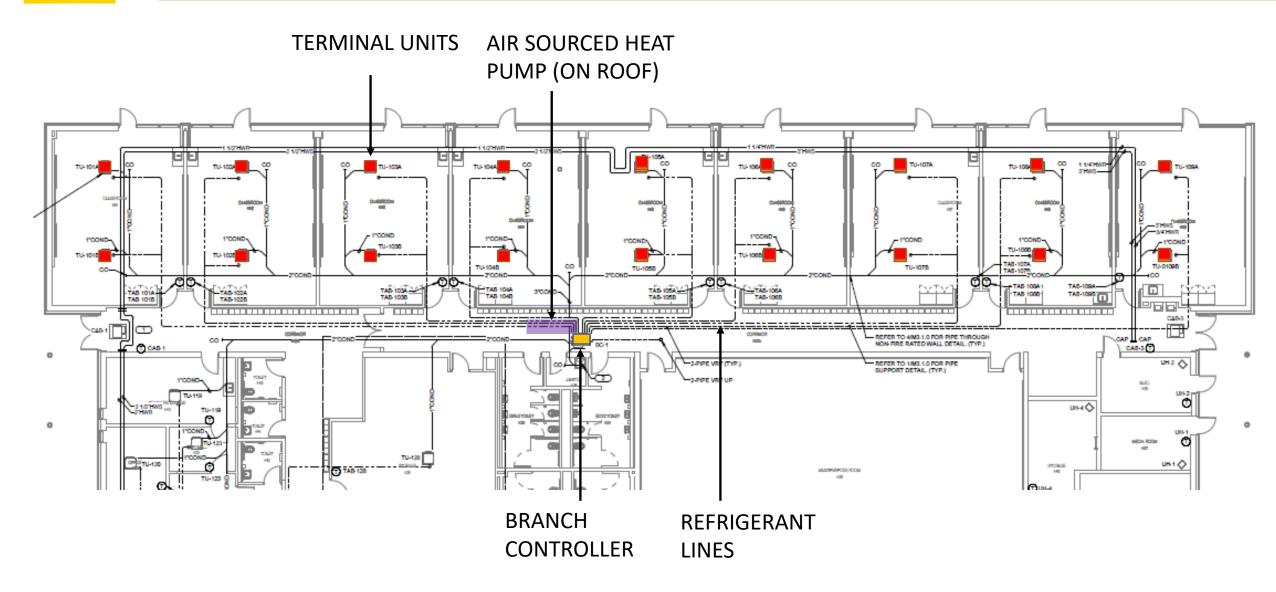

Air Source Heat Pump High Efficiency COP: 3.66

Branch Controllers

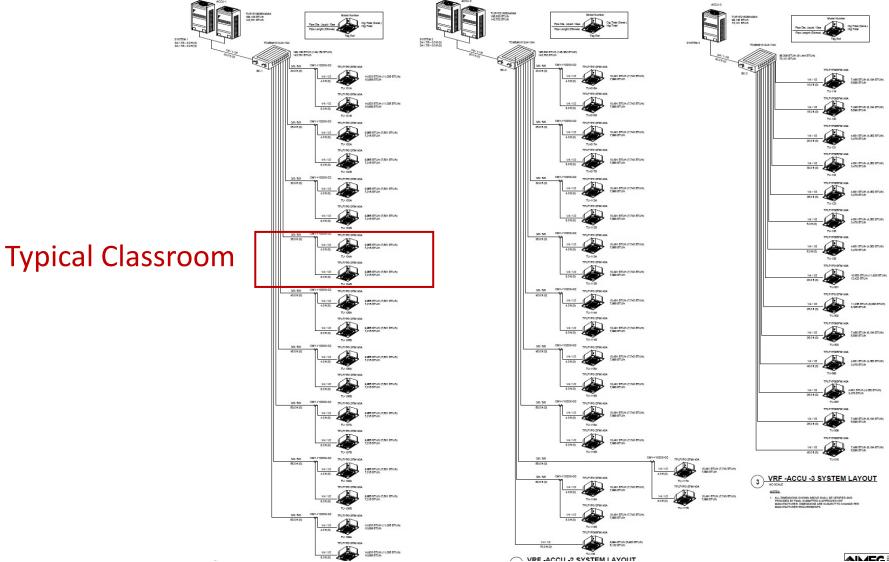
Energy Recovery allows different rooms on the same branch controller to be simultaneously heating and cooling.


Terminal Units

Located in each conditioned space.


Terminal Unit - Cassette

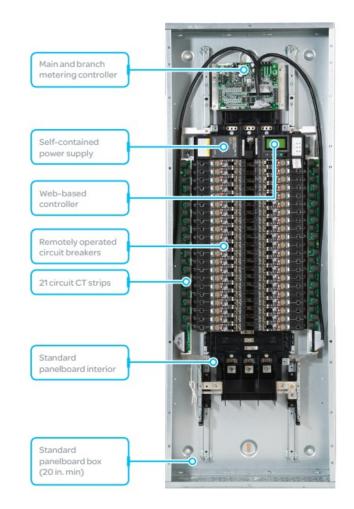
Variable Refrigerant Flow System (VRF)



₩ _____®

Variable Refrigerant Flow System (VRF)

Variable Refrigerant Flow System (VRF)


Variable Refrigerant Flow System (VRF)

Make sure you know what things look like. Team was surprised by the shrouds over the VRF Units.

Energy Efficient Lighting and DHW Systems

- All LED Lighting
- All lighting on "Vacancy" Sensors or "Occupancy" Sensor where possible.
- DHW loop on thermostat controlled "On Demand" System.
- Measurement and Verification Electrical Panels for energy monitoring

Energy Monitoring

Weekly	Annual Soli Produc		Lights & Plug Loads	Carbon Emissions	Weekly An	nual Solar Production	нуас р	Lights & Ca Plug Loads Em	arbon nissions	Weekly	Annual	Solar Production	HVAC	Lights & Plug Loads	Carbon Emissions
				97.55.	Today's	Heating Ventilation Energy Con	n & Air Conditio nsumption	ning (HVAC)							
180 keh	hts Consumption	Plug Lo	oads Consumpt	tion		cah						day's Solar Pa		tion	
100 keh		100 kati		_	40 20 0	can can Actual Actual Gas Electric April April	Expected Expect Gas Electr April April April	ric			100 80	ikah			
60 keh	Actual Expected		ctual Expected									ikah Ikah Actual April	Expected		
	April April	A	ypril Ápril		Toda	y's HVAC Actual vs E		gy Usage				yışını.	-April		
	Today's Actual	vs Expected Energ	gy Usage			Mon		SACELLER			Today's A	ctual vs Expe	ected Solar (Generation	
FAIR	GOOD VERV GOOD	FAIR	GOOD VERV	6000		_Roof To	op Unit	4					OD VERV GO		
TON		Moy CELLENT		EXCELLENT		DX Coll Reheat	Coll Cond	denser Fans			TOP		\square	So Excent	
	Lights		Plug Loads		Exhaust Fan	pers Sup Filter	ipply Fan Gas Heat	<u> III</u>			7		~	ENT	

Energy Monitoring

For a Monitored Project to be successful. Not only does the modeling and execution have to be done right... The **Occupants have to behave** as expected.

Outreach and Education are Critical

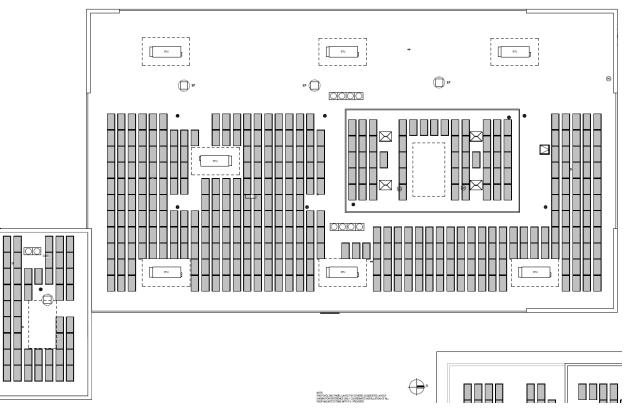
Operational Considerations - Scheduling

Operating schedule impacts occupant Load, lighting load, and ventilation rates

Park View School

River Trails School District 26

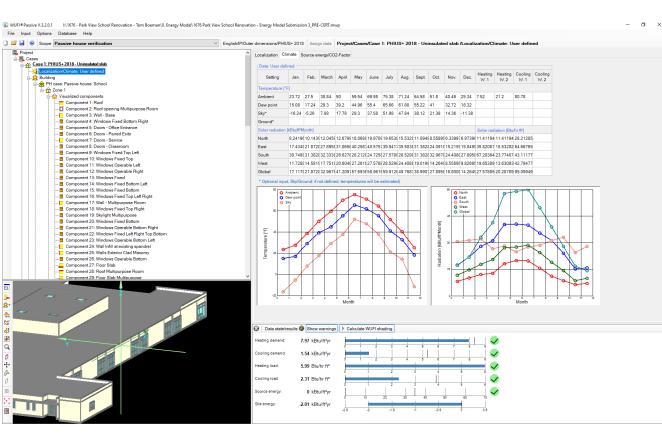
upancy Summary for WUFI	Occupant Type	Occupancy	Start Time	End Time	Hours	Days/Year	Include in Max (only concurrent uses)	Max	Occupant Hours per Year	Average Occupancy (= Occupant Hours per yr / 8760 hrs per yr)
ool Year (Heating Season)										
Educational										
Classrooms	Children (age 0-10)	250	8:30 AM	3:00 PM	6.50	185	у	250	300625	34.32
Classrooms	Adult Standing or Light Work	25	7:00 AM	5:00 PM	10.00	185	у	25	46250	5.28
School Offices	Adult Standing or Light Work	10	7:00 AM	5:00 PM	10.00	210	у	10	21000	2.40
District Offices	Adult Standing or Light Work	12	6:00 AM	6:00 PM	12.00	260	y	12	37440	4.27
Extracuricular School Use										
Multipurpose Room	Children (age 0-10)	160	6:00 PM	10:00 PM	4.00	5		0	3200	0.37
Multipurpose During School Day (For Ventilation) daytime occupancy is from students and teachers accounted for in Classroom Count)		0	8:30 AM	5:00 PM	8.00	185		0	0	0.00
Public Use										
Multipurpose (Adult) - AM Child Care	Adult Standing or Light Work	3	6:00 AM	8:30 AM	2.00	185		0	1110	0.13
Multipurpose (Adult) - PM Child Care	Adult Standing or Light Work	3	3:00 PM	6:30 PM	3.50	185		0	1943	0.22
Multipurpose (Children) - AM Child Care	Children (age 0-10)	15	6:00 AM	8:30 AM	2.50	185		0	6938	0.79
Multipurpose (Children) - PM Child Care	Children (age 0-10)	15	3:00 PM	6:30 PM	3.00	185		0	8325	0.95
Classroom (Public Use)	Adults	20	7:00 PM	9:00 PM	2.00	87		0	3480	0.40
nmer (Cooling Season)										
Educational										
Classrooms Pre K Summer	Children (age 0-10)	50	8:00 AM	12:00 PM	4.00	58		0	11600	1.32
					0.00					
Public										
Multipurpose (Children) - Camp	Children (age 0-10)	25	8:00 AM	4:00 PM	8.00	58		0	11600	1.32
Multipurpose (Adult) - Camp	Adult Standing or Light Work	2	8:00 AM	4:00 PM	8.00	58		0	928	0.11
Multipurpose (Children) - PM	Children (age 0-10)	30	7:00 PM	9:00 PM	2.00	24		0	1440	0.16
Multipurpose (Adult) - PM	Adult Standing or Light Work	2	7:00 PM	9:00 PM	2.00	24		0	96	0.01
Classrooms - Camp	Children (age 0-10)	15	8:00 AM	4:00 PM	8.00	58		0	6960	0.79
Classrooms - Camp	Adult Standing or Light Work	1	8:00 AM	4:00 PM	8.00	58		0	464	0.05
		638						297	463398.00	53


WUFI Peak Occupancy

WUFi Demand Occupancy

Tighten the Schedule and Make sure the owner and operating engineer are on board with the ventilation strategy.

- ICECF Grant required all Renewable production to be "On Site"
- 166.4 KW Roof top Photovoltaic Array.


Model Results

6

<mark>).</mark> 2-

÷. 12

~ ₩ @ Q

PASSIVEHOUSE REQUIREMENTS

Certificate	criteria:	PHIUS+ 2018
-------------	-----------	-------------

Heating demand

sensible:

specific:

specific:

target:

total:

total:

total: specific:

specific:

latent:

target:

total:

specific:	7.97	kBtu/ft²yr
target:	8.3	kBtu/ft²yr
total:	222,607.52	kBtu/yr

Cooling demand

0	.38 kBtu/ft²yr
1	.16 kBtu/ft²yr
1	.54 kBtu/ft ² yr
	5.3 kBtu/ft ² yr
43,126	6.85 kBtu/yr

Heating load

5.99	Btu/hr ft ²
6.3	Btu/hr ft²
167,268.2	Btu/hr

2.31 Btu/hr ft²

64.465.63 Btu/hr

3.9 Btu/hr ft²

Cooling load

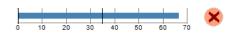
specific: target: total:

Source energy

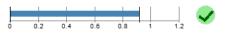
545,688.86	kWh/yr
66.66	kBtu/ft²yr
34.8	kBtu/ft²yr
1,861,783.88	kBtu/yr
66.66	kBtu/ft²yr
	66.66 34.8 1,861,783.88

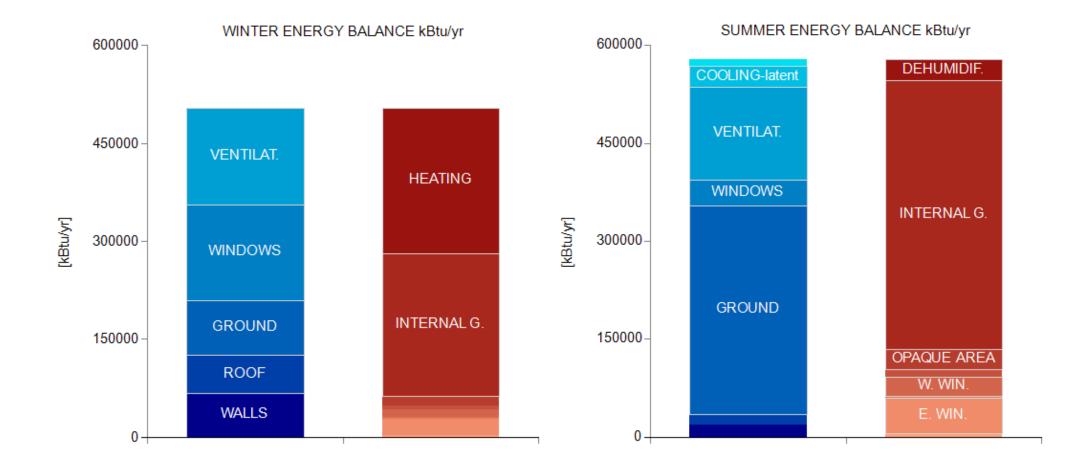
Site energy

664,922.81	kBtu/yr
23.81	kBtu/ft²yr
194,888.88	kWh/yr
6.98	kWh/ft ²

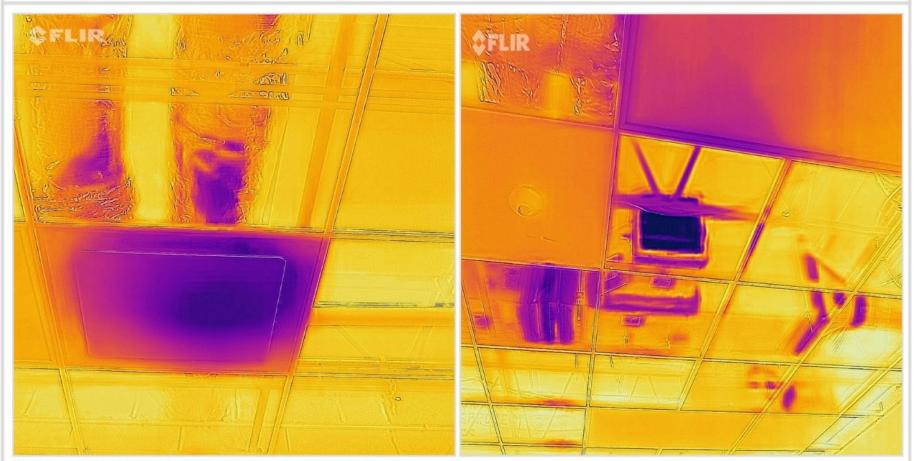

Air tightness

ACH50:	0.92	1/hr
CFM50 per envelope area:	0.06	cfm/ft ²
target:	0.92	1/hr
target CFM50:	0.06	cfm/ft ²

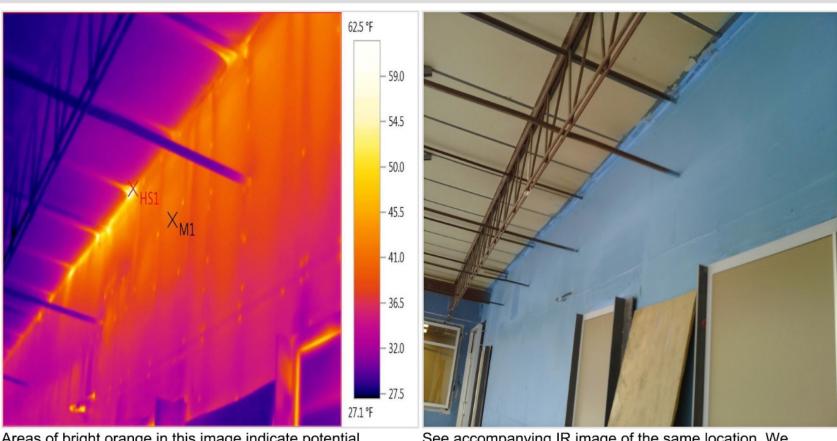




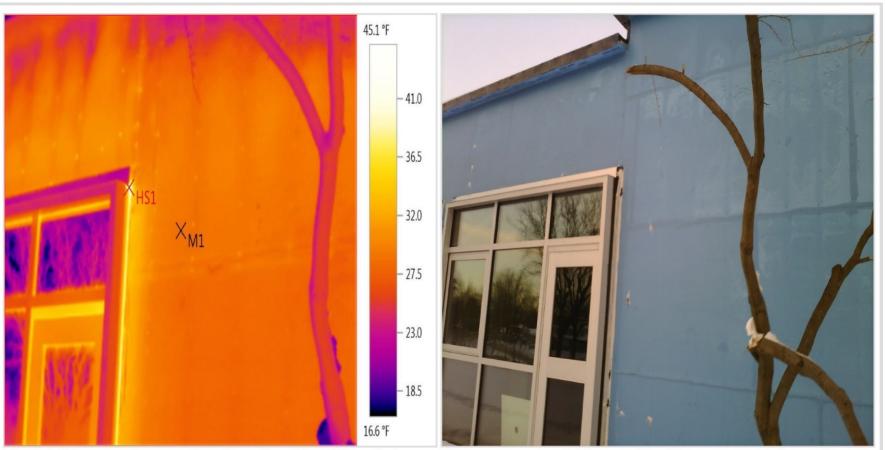
4.17 8.33 12.5 16.67 20.83 25



Model Results


Purple color in ducts indicates they are connected to the outside even though intake and exhaust are taped off.

Loose joint between DOAS main enclosure and ERV module


DOAS Units include a large volume of air outside the building envelope. And they can leak. Provide Dampers on the interior duct connections to the units.

Areas of bright orange in this image indicate potential imperfections in the air seal between the wall and roof overhang.

See accompanying IR image of the same location. We recommending double-checking the integrity of the air seal between the entire wall / roof intersection at the roof overhangs on the north and south ends of the building.

The bright orange line running down the side of the window could be a thermal bridge and not an air leak. But we'd recommend double checking that all of the window flashing is air tight one last time before concealing it with insulation and siding.

See comment on IR image. Flashing appears to be well installed.

PETER McCULLOUGH PHOTO + DRONE

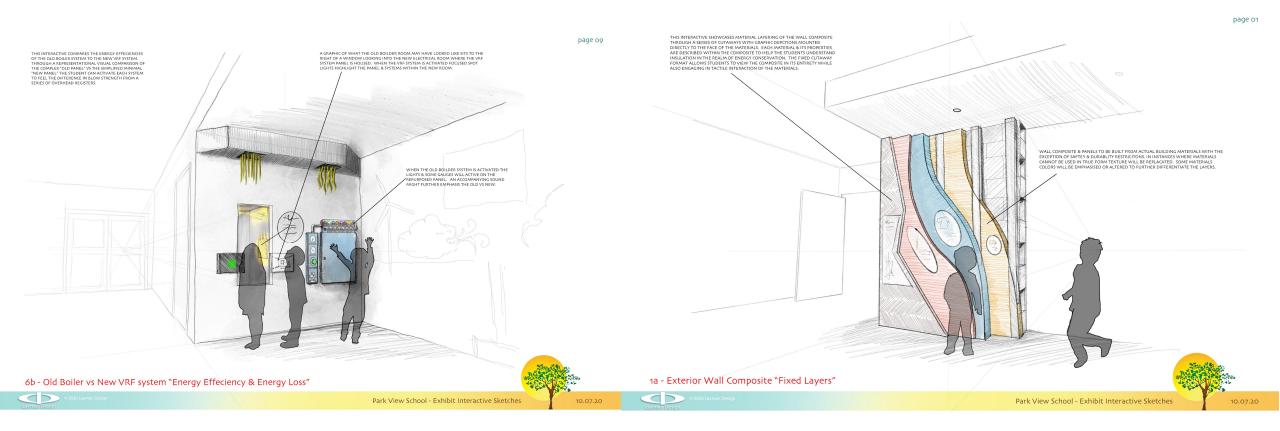
FGM ARCHITECTS

PETER McCULLOUGH PHOTO + DRONE

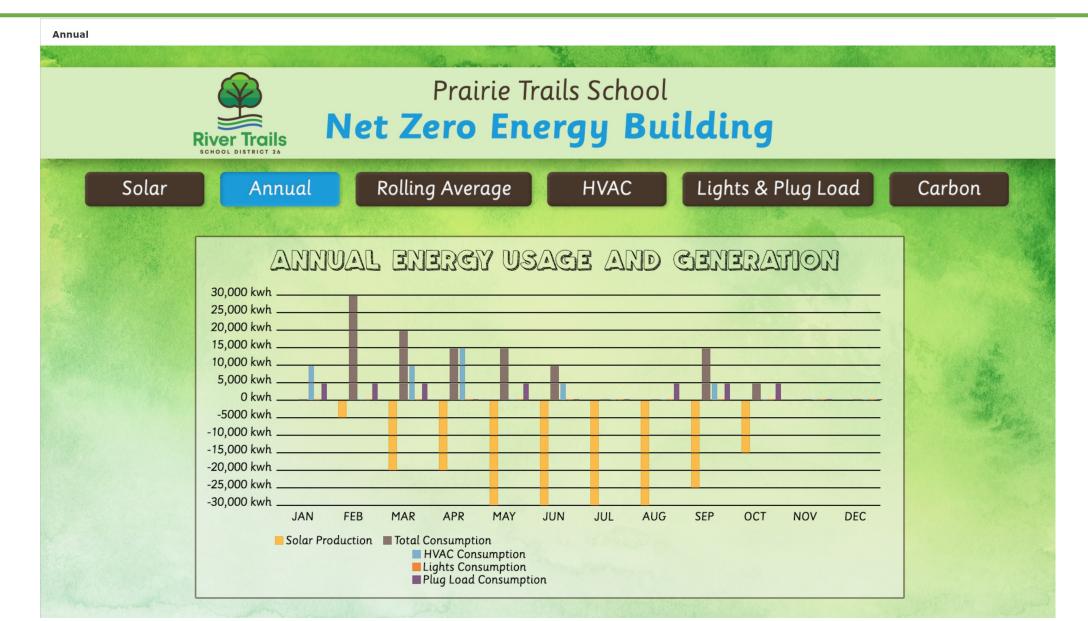
PETER McCULLOUGH PHOTO + DRONE

PETER McCULLOUGH PHOTO + DRONE

Photo by Trane Technologies


Education and Outreach

Education and Outreach


Layman Design

Monitoring (Issues)

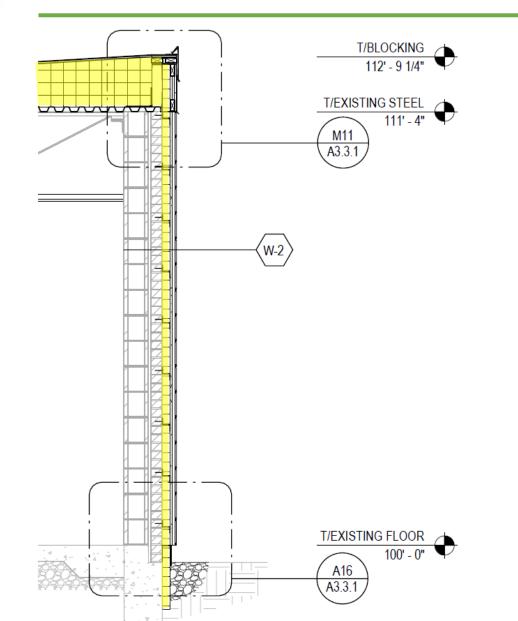
- The team noticed several of the DOAS units were using the electric resistance backup heating element in lieu of the more efficient Heat Pump in the unit.
- Set Points are important. Cabinet Unit heaters near doors and in utility rooms were set initially to 68deg. In the winter, they ran continuously, meeting the heating demand with less efficient resistance heaters rather than the more efficient VRF heat pump.

Monitoring

Thank You! Hope to see you on Saturday

Zone VRF Branch controllers to take advantage of simultaneous heating and cooling efficiencies. Consider what scenarios might require simultaneous heating and cooling and Zone Accordingly.

Consider implications of running refrigerant lines throughout the interior space.

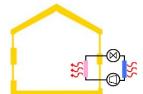


Make sure there is no direct exhaust ventilation. Except as required for kitchens or combustion appliances.

Align Ventilation Zones with Operational Zones as much as possible

Use Heat pump for DOAS Ventilation air Conditioning

Thermal Envelope - Wall Section: 100% DD


R-30 Roof Tapered Polyisocyanurate

R-15 Walls (Total R-18)

2 1/2" Polyisocyanurate

R-15 Slab Edge

2 ½" Polyisocyanurate 2'-0" Deep

Mechanical System Selection

System/Plant	EUI			Energy Cost		
System/Plant	(kBtu/sqft/yr)	% Savings		(\$/yr)	% Savings	
Baseline: 90.1-2013	75	-	\$	30,128	-	
Single Pipe Hybrid Geothermal	20	74%	\$	21,854	27%	
Single Pipe 100% Geothermal	20	74%	\$	21,682	28%	
VRF Hybrid Geothermal	17	78%	\$	18,264	39%	
VRF 100% Geothermal	16	78%	\$	18,026	40%	
VRF Air Cooled	23	69%	\$	25,327	16%	

Energy Source	Utility Costs			
Electric	\$0.086 per kWh	\$0.025 per kBtu		
Natural Gas	\$0.386 per therm	\$0.004 per kBtu		

Envelope Assumptions				
Exterior Wall:	R-18 (U-0.055)			
Roof:	U-0.032			
Windows:	U-0.42 and SHGC: 0.40			
Window to Wall Ratio:	35%			

Thermal Envelope - Windows: 100% DD

PHIUS+ Certification & ICECF Grant Process

	Design	Construction	Post Construction
PHIUS	PHIUS Requirements		
	Pre - Certification	Final - Certification	
Illinois Clean Energy	Energy Model and Documentation	PHIUS+ PHIUS+ PHIUS+ PHIUS+ PHIUS+ On-Site QA/QC Testing/Inspection	
	Pre Proposal	Full Proposal	Monitoring
			12 Consecutive Months Monitoring
	First Grant Payout (30%)	Second Grant Payout (30%)	Final Grant Payout (40%)